

# DRAFTING COURSE

FROM IDEA TO MANUFACTURING

Gesinus Mateman & Rick Timmer VDL ETG T&D 2022.02.28

STRENGTH THROUGH COOPERATION

### PLANNING

- Introduction (5min)
- Short introduction on production methods how they affect your work (5min)
- Product tolerance specification (25-30min)
  - Dimensional tolerances
  - Geometrical tolerances (GD&T Symbols)
- Coffee Break (10min)
- > Part about Tolerance trains, how they affect TPD and why they are important (20-25min)
- Building a tolerance train(15-20min)
- Coffee Break(10min)
- Some examples and explanation of making TPD's (15-20min)
- Assignment for drafting and feedback (max 1h)

### INTRODUCTION

WHO ARE WE

Gesinus Mateman Sr. Mechanical Design Engineer

- VDL ETG T&D Almelo
- Almost 25 years of work expierence
- Bachelor ME @Saxion Hogeschool



• gesinus.mateman@vdletg.com, +31 610180733

Rick Timmer, Mechanical Design Engineer

- VDL ETG T&D Hengelo
- 1,5 years of work expierence
- Master ME @UTwente
- ASML EXE as Tooling Engineer
- <u>Rick.timmer@vdletg.com</u>, +31 611930575



#### PRODUCTION METHOD

HOW ARE YOU GONNA MAKE IT?

- > You shoud have an idea what production technology you will use for a part, since it will affect the part's
  - Dimensional accuracy
  - Material
  - > Shape
  - > Cost
  - > ...

Course focus is on single piece and small series technologies

#### MOST COMMON MANUFACTURING TECHNOLOGIES FOR MACHINE CONSTRUCTION

| Manufacturing<br>Technology    | Typical Manufacturing<br>Tolerance | Typical Applications                  | Remarks                                               |
|--------------------------------|------------------------------------|---------------------------------------|-------------------------------------------------------|
| Welding                        | ≥ ±1 mm                            | Frames, Constructions                 | Apply post machining for accurate interfaces          |
| Bending                        | ≥ ± 0.5 mm / ± 0.5°                | Frames, Brackets,<br>Cover, Cabinets  | Tolerance increases with material/<br>sheet thickness |
| Laser Cutting                  | ≥ ±0.1 mm                          | Sheet metal parts                     | Tolerance increases with sheet thickness              |
| Milling / Turning/<br>Drilling | ≥ ±0.01 mm                         | General Machine Parts                 |                                                       |
| Grinding                       | ≥ ±0.002 mm                        | High Precision parts                  | Manufacturing of High Quality<br>Surfaces             |
| EDM                            | ≥ ±0.001 mm                        | High Precision parts,<br>Leaf springs | Wire EDM, Plunger EDM                                 |

#### TOLERANCES IN PRODUCT DRAWINGS

KEY ELEMENT OF THE PRODUCT SPECIFICATION

- Dimensional Tolerances
- Geometric Tolerances (GD&T Symbols)

### **DIMENSIONAL TOLERANCES**





## **GEOMETRIC TOLERANCES**

#### SELECTION OF THE MOST COMMONLY USED SYMBOLS (ISO 1101)



- O Roundness
- ☐ Surface Profile
- // Parallelism
- ⊥ Perpendicularity
- $\oplus$  Position
- O Concentricity/ Coaxiality
- <u>–</u> Symmetry
- Circular Run Out

Tolerance Feature Control Frame





Datum Target



Theoretically Exact Dimension



https://www.keyence.com/ss/products/measure-sys/gd-and-t/symbol-list/

### **GEOMETRIC TOLERANCES**

#### HOW TO USE



### **GEOMETRIC TOLERANCES**

#### APPLICATION EXAMPLE





## COFFEE BREAK

#### TOLERANCE TRAIN

HOW DO YOU MAKE IT FIT?

- What is a tolerance train
- Why do you use it
- How do you use it
- **Example**

#### With help from Willem Willemsen

## WHAT IS A TOLERANCE TRAIN?

#### A TRAIN THAT IS NEVER LATE

- Goal is to check whether everything fits
- Determine clearances for placement and assembly
- Cheaper manufacturing (only high tolerance where required)
- Posibility for statistical computation
- Important links:
- https://www.nadro.nl/mark/iso-passingstelsel.html
- https://www.gdandtbasics.com/gdt-symbols/



### **HOW DOES IT LOOK**

Every part has variations (mechanical, sensor, actuator, optical, etc.)

Tolerance is the allowed variation of a part as defined by it's specifications.



The tolerance chain connects the tolerances. The chain is always closed, C - B - A = ?



Stepped appoach

| 1. | Describe the purpose and background         |                                                               |         |  |  |  |  |  |
|----|---------------------------------------------|---------------------------------------------------------------|---------|--|--|--|--|--|
| 2. | Define Critical Distance<br>& Machine State |                                                               | Block 1 |  |  |  |  |  |
| 3. | Make a <b>sketch</b>                        | a. Interfaces<br>b. Tolerance chain<br>c. External influences |         |  |  |  |  |  |
| 4. | Make a diagram                              | d. Vectors                                                    |         |  |  |  |  |  |
| 5. | 5. Make the <b>Tolerance Table</b>          |                                                               |         |  |  |  |  |  |
| 6. | Evaluate the <b>budget (capability)</b>     |                                                               | DIOCK 2 |  |  |  |  |  |
| 7. | Draw conclusion & make recomm               | endation                                                      |         |  |  |  |  |  |

#### EXAMPLE



Simplify to keep it manageable, but keep a clear link with reality (define part names).



Simplify to keep it manageable, but keep a clear link with reality (define interfaces).



Simplify to keep it manageable, but keep a clear link with reality (define chain).



Simplify to keep it manageable, but keep a clear link with reality (define external influences).



Simplify to keep it manageable, but keep a clear link with reality (complete).



### DIAGRAM

Purpose of a diagram: error reduction and additional details

- Module/part = Rectangle (Convention: simplified shapes of sketch, keep relative position as exploded view)
- Interface = Rectangle inside Module/part (Convention: "from" part name\_"to" part name
- Tolerance = Arrow  $\longrightarrow$



### VECTOR

Yes important but not for now

- > Vectors are used to calculate the displacement of parts caused by angular variations of their interfaces
- Start = interface plane with rotation tolerance, End = Critical distance
- > Vector is always perpendicular to the direction of the critical distance
- > Not all vectors are relevant. Long vectors are usually large contributors





### **TOLERANCE TABLE**

Fill the table

- Copy "ID's", "From" and "To" from Diagram to the Tolerance table.
- Fill in the values in de column that corresponds with the critical distance
- Mention the source of the values in the Ref. (or remarks) column
- Fill in the S/L (Statistic or Linear) column

| 2  |         | Sensor to Y-bar |            |   |          |     |    |          |    |     |                                              |      |
|----|---------|-----------------|------------|---|----------|-----|----|----------|----|-----|----------------------------------------------|------|
| 3  |         | Machine state   |            | х | Y        | Ζ   | Rx | Ry       | Rz | S/L |                                              |      |
| 4  | ID      | From            | То         |   | +/- [um] |     |    | +/- [ura | d] |     | Remarks                                      | Ref. |
| 6  | Ybar1   | Ybar_sens       | Ybar_buf   |   |          | 20  |    |          |    | s   | Manufacturing tolerances                     |      |
| 7  | Buf1    | Bur_Ybar        | Buf_Slide  |   |          | 100 |    |          |    | S   | Manufacturing tolerances                     |      |
| 8  | BufWear | Bur_Ybar        | Buf_Slide  |   |          | 100 |    |          |    | L   | Max wear at end of lifetime certainly achiev | 1    |
| 9  | BufDef  | Bur_Ybar        | Buf_Slide  |   |          | 20  |    |          |    | L   | Max deformation at maximum force occurs      | •    |
| 10 | Slide1  | Slide_Buf       | Slide_hold |   |          | 20  |    |          |    | s   | Manufacturing tolerances                     |      |
| 11 | HoldT   | Holde_Slide     | Hold_Fcon  |   |          | 10  |    |          |    | I . | Temperature effects                          |      |
| 12 | Hold1   | Holde_Slide     | Hold_Fcon  |   |          | 100 |    |          |    | s   | Manufacturing tolerances                     |      |
| 13 | Fcon1   | Fcon_hold       | Fcon_Mcon  |   |          | 200 |    |          |    | s   | Manufacturing tolerances                     |      |
| 14 | Mcon1   | Mcon_Fcon       | Mcon_sens  |   |          | 200 |    |          |    | s   | Manufacturing tolerances                     |      |
| 15 | Sens1   | Sens_Mcon       | Sens_Ybar  |   |          | 50  |    |          |    | s   | Manufacturing tolerances                     |      |
|    |         |                 |            |   |          |     |    |          |    |     |                                              |      |

## **TOLERANCE TABLE**

Statistic or Linear?

#### Suidelines to determine if a tolerance is Statistic or Linear:

| Count Linear                                                                                                                                                                                                                                                              | Count Statistical                                                                                                                                                                                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>Play</li> <li>Wear</li> <li>Deformation</li> <li>Shrink (e.g. adhesive)</li> <li>Strokes for calibration</li> <li>Vibrations e.g. servo-error</li> <li>Contributors from processes<br/>with bad process control</li> <li>Parts from selection process</li> </ul> | <ul> <li>Generally: good process control</li> <li>Manufacturing errors</li> <li>Adjustment errors</li> <li>Measurement Errors</li> <li>Contributions which are the sum<br/>of 5 or more independent sub-<br/>contributors</li> </ul> |  |  |  |  |  |
| (quality bins, cherry picking)                                                                                                                                                                                                                                            | Mechanism: averaging                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                           | Precondition: independent sources                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |  |  |  |  |  |

T\_Real = T\_Lin + T\_Stat \*  $\sqrt{3}$ , with:





### **TOLERANCE BUDGET**

Fill in value for K. This could be derived from a requirement, CAD, nominal design analysis, etc.

- The sheet will add up the individual items to a tolerance sum.
- If the sum and K are known, the Capability is calculated.

| 2                 |           | Sensor to Y-bar |            |   |          |      |    |          |    |     |                                              |      |
|-------------------|-----------|-----------------|------------|---|----------|------|----|----------|----|-----|----------------------------------------------|------|
| 3                 |           | Machine state   |            | X | Y        | Z    | Rx | Ry       | Rz | S/L |                                              |      |
| 4 <b>I</b>        | )         | From            | То         |   | +/- [um] |      |    | +/- [ura | d] |     | Remarks                                      | Ref. |
| 6 <b>Y</b>        | bar1      | Ybar_sens       | Ybar_buf   |   |          | 20   |    |          |    | s   | Manufacturing tolerances                     |      |
| 7 <b>B</b>        | uf1       | Bur_Ybar        | Buf_Slide  |   |          | 100  |    |          |    | s   | Manufacturing tolerances                     |      |
| 8 <b>B</b>        | ufWear    | Bur_Ybar        | Buf_Slide  |   |          | 100  |    |          |    | L   | Max wear at end of lifetime certainly achiev | p    |
| 9 <b>B</b>        | ufDef     | Bur_Ybar        | Buf_Slide  |   |          | 20   |    |          |    | L   | Max deformation at maximum force occurs      | r    |
| 10 <b>S</b>       | lide1     | Slide_Buf       | Slide_hold |   |          | 20   |    |          |    | s   | Manufacturing tolerances                     |      |
| 11 <b>H</b>       | oldT      | Holde_Slide     | Hold_Fcon  |   |          | 10   |    |          |    | 1   | Temperature effects                          |      |
| 12 <b>H</b>       | old1      | Holde_Slide     | Hold_Fcon  |   |          | 100  |    |          |    | s   | Manufacturing tolerances                     |      |
| 13 <b>F</b>       | con1      | Fcon_hold       | Fcon_Mcon  |   |          | 200  |    |          |    | s   | Manufacturing tolerances                     |      |
| 14 <b>M</b>       | lcon1     | Mcon_Fcon       | Mcon_sens  |   |          | 200  |    |          |    | s   | Manufacturing tolerances                     |      |
| 15 <mark>S</mark> | ens1      | Sens_Mcon       | Sens_Ybar  |   |          | 50   |    |          |    | s   | Manufacturing tolerances                     |      |
| 16                |           |                 |            |   |          |      |    |          |    |     |                                              |      |
| 18 <b>S</b>       | um        |                 |            | 0 | 0        | 687  | 0  | 0        | 0  |     | Sensor to Y-bar                              |      |
| 23 <b>K</b>       | 1         | Sens_Ybar       | Ybar_sens  |   |          | 500  |    |          |    |     | Safe clearance for easy connection           |      |
| 24 C              | apability | /               |            |   |          | 0,73 |    |          |    |     |                                              |      |

## **DRAW CONCLUSION**

What is Capability?

#### Capability = Requirement / Sum (of all tolerances)

| Sum        |  | 450  |  |
|------------|--|------|--|
| к          |  | 300  |  |
| Capability |  | 0,67 |  |

What is the right capability in which phase of the project?

#### Capability C Budget confidence level

- $C \ge 2$  Safe. There is a factor 2x margin for unknown and/or missing budget items.
- $1.3 \le C < 2$  Critical but acceptable when there is a good knowledge about all the budget items and the budget is accepted after review.
- 1.0 < C < 1.3 Very critical and in general not acceptable in the design phase.
- $^{\circ} C \leq 1.0$  Not acceptable.

Generally Ok for concept design Generally Ok for detailed design Generally Nok for detailed design Nok for detailed design

#### BUILDING A TOLERANCE TRAIN MAKE IT FIT!

Now lets make a tolerance train for a simple system.

### **COMPONENTS AND ASSY**







## COFFEE BREAK

#### TPD EXAMPLE AND ASSIGNMENT DRAW SOMETHING!

Assembly in 3 components

#### ASSEMBLY



### **VENDOR COMPONENT USED**

#### EC 45 flat Ø43.5 mm, brushless, 60 watt

**Open Rotor** 



#### M 1:2



Stock program Standard program Special program (on request) Part Numbers

### **3 COMPONENTS TO BE TOLERANCED AND PUT TOGETHER**









## HOW MUCH CAN YOU TOLERATE? ;)

- Stepfiles through mail
- Also have printed out versions
- Think about tolerances and how they might stack up
- If required make a small tolerance train







| 1 #####     | # Simple budget without tolerance pool or tilt/rotation influences |       |   |          |      |    |          |    |     |                                |      |        |
|-------------|--------------------------------------------------------------------|-------|---|----------|------|----|----------|----|-----|--------------------------------|------|--------|
| 2           | Module A accuracy                                                  |       |   |          |      |    |          |    |     |                                |      |        |
| 3           | Machine state                                                      |       | X | Y        | Z    | Rx | Ry       | Rz | S/L |                                |      |        |
| 4 ID        | From                                                               | То    |   | +/- [um] |      |    | +/- [ura | d] |     | Remark                         | Ref. | Status |
| 5           | Ain                                                                | Aou   |   |          | 100  |    |          |    | s   |                                |      |        |
| 7           | B in                                                               | B out |   |          | 500  |    |          |    | s   |                                |      |        |
| В           | C in                                                               | C out |   |          | 1000 |    |          |    | s   |                                |      |        |
| 9           | D in                                                               | D out |   |          | 200  |    |          |    | s   |                                |      |        |
| 0           | Fin                                                                | F out |   |          | 4    |    |          |    | s   |                                |      |        |
| 1           | Apin                                                               | Apout |   |          | 6    |    |          |    | s   |                                |      |        |
| 2           |                                                                    |       |   |          |      |    |          |    |     |                                |      |        |
| 3           |                                                                    |       |   |          |      |    |          |    |     |                                |      |        |
| 4           |                                                                    |       |   |          |      |    |          |    |     |                                |      |        |
| 5 Sum       |                                                                    |       | 0 | 0        | 1810 | 0  | 0        | 0  |     | Module A accuracy              |      |        |
| 1 K         |                                                                    |       |   |          | 1004 |    |          |    |     | Required accuracy (=EPS spec.) |      |        |
| 2 Capabilit | ty                                                                 |       |   |          | 0,55 |    |          |    |     |                                |      |        |

#### . . .