Math for the wheel location

For some explanations about the variables and the x and y conventions look at Omnidirectional Control page. Below the formulas are given to calculate the velocity and acceleration of the robot. $$ v_x=\omega*r_{wheel}*(2*sin(\phi)+2*sin(\theta))*\frac{z_1}{z_2} $$ $$ v_y=\omega*r_{wheel}*(2*cos(\phi)+2*cos(\theta))*\frac{z_1}{z_2} $$ $$ F_{motor}=\tau/r_{wheel}*\frac{z_2}{z_1} $$ $$ F_x=F_{motor}*(2*sin(\phi)+2*sin(\theta)) $$ $$ F_y=F_{motor}*(2*cos(\phi)+2*cos(\theta)) $$ $$ a_x=F_{x}/m_{robot} $$ $$ a_y=F_{y}/m_{robot} $$

$z_1$ and $z_2$ are the gears teeth, where $z_1$ is the pinion gear attached to the motor and $z_2$ is attached to the wheel.

Values

The formulas above are put in a Python file to calculate the values for the velocity and acceleration. For the new robot, the gear ratio has become 1.

Specs Current New Unit
$v_x$ 6.17 15.03 $[m/s]$
$v_y$ 8.43 20.53 $[m/s]$
$a_x$ 20.4 8.96 $[m/s^2]$
$a_y$ 27.87 12.24 $[m/s^2]$